A Generalized Recurrent Neural Architecture for Text Classification with Multi-Task Learning

نویسندگان

  • Honglun Zhang
  • Liqiang Xiao
  • Yongkun Wang
  • Yaohui Jin
چکیده

Multi-task learning leverages potential correlations among related tasks to extract common features and yield performance gains. However, most previous works only consider simple or weak interactions, thereby failing to model complex correlations among three or more tasks. In this paper, we propose a multi-task learning architecture with four types of recurrent neural layers to fuse information across multiple related tasks. The architecture is structurally flexible and considers various interactions among tasks, which can be regarded as a generalized case of many previous works. Extensive experiments on five benchmark datasets for text classification show that our model can significantly improve performances of related tasks with additional information from others.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

Recurrent Neural Network for Text Classification with Multi-Task Learning

Neural network based methods have obtained great progress on a variety of natural language processing tasks. However, in most previous works, the models are learned based on single-task supervised objectives, which often suffer from insufficient training data. In this paper, we use the multitask learning framework to jointly learn across multiple related tasks. Based on recurrent neural network...

متن کامل

Predicting Movie Genres Based on Plot Summaries

This project explores several Machine Learning methods to predict movie genres based on plot summaries. Naive Bayes, Word2Vec+XGBoost and Recurrent Neural Networks are used for text classification, while K-binary transformation, rank method and probabilistic classification with learned probability threshold are employed for the multi-label problem involved in the genre tagging task. Experiments...

متن کامل

Learning Connectedness in Binary Images

This paper proposes a new Eye-based Recurrent Network Architecture (ERNA) for image classification. The new architecture is trained by a combination of Qlearning and RPROP. The classification performance is compared with other network architectures on the task of determining connectedness between pixels in small binary images. The experiments show that ERNA outperforms both the standard multi-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017